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ABSTRACT 
This work focuses on the research related to enabling 

individuals with speech impairment to use speech-to-text 

software to recognize and dictate their speech. Automatic Speech 

Recognition (ASR) tends to be a challenging problem for 

researchers because of the wide range of speech variability. 

Some of the variabilities include different accents, 

pronunciations, speeds, volumes, etc. It is very difficult to train 

an end-to-end speech recognition model on data with speech 

impediment due to the lack of large enough datasets, and the 

difficulty of generalizing a speech disorder pattern on all users 

with speech impediments. This work highlights the different 

techniques used in deep learning to achieve ASR and how it can 

be modified to recognize and dictate speech from individuals 

with speech impediments. 

 
1. INTRODUCTION 
 Recent advancements in Artificial Neural Networks (ANN) 

have allowed researchers to expect the state-of-the-art 

performance on every application assigned to the network. For 

example, prediction of depth dimension from a single camera [1] 

and the classification of raw pixels into objects [2]. 

 

 Likewise, the advancements in Recurrent Neural Networks 

-especially ASR– have provided the state-of-the-art 

performance. The work of Graves et al. [3] in classical Temporal 

Classification (CTC) made it possible to use unsegmented data 

in an end-to-end speech recognition application [4]. 

 

Other statistical Models, such as Hidden Markov Models 

(HMM), Gaussian Mixture Models (GMM) /HMM, Dynamic 

Time Wrapping (DTW) and Deep Neural Networks 

(DNN)/HMM, offer a solution to the speech recognition problem 

[5,15]. In this work, we are implementing a Deep Bidirectional 

Recurrent Neural Network with a CTC output layer for end-to-

end training. The chosen method provides the state-of-the-art 

performance in speech recognition [4] and is easier to implement 

with the TensorFlow framework used for designing and training 

this ASR model. We have not considered any of the other 

methods for the work presented in this paper. 

 

 Deep Neural Networks (DNN) require a large dataset for 

supervised training to avoid underfitting. It is challenging to find 

a large enough dataset containing speech impediment data to 

train an end-to-end speech recognition model, so we have to rely 

on post-processing to solve this problem. 

 

It is important to understand the difference between a 

normal speech recognition system and one that is designed for 

persons with speech impediments. In a normal ASR system, the 

input sentence provided to the network is expected to have 

semantic meaning, and has no missing or extra phonemes/letters. 

This makes it easier to train a classification network and 

transform input speech to phonemes/letters. However, a system 

designed to transcribe speech impediment audio input will have 

to generate a number of potential words depending on the 

severity of the impediment, and rely on a language model to 

generate full sentences with semantic meanings. 

 

This work focuses on building a full phoneme-based ASR 

system, modifying the output phonemes and connecting the 

generated potential words to a language model. 

2. FEATURE EXTRACTION 
The first step in any automatic speech recognition system is 

feature extraction. Many techniques are being used for feature 

extraction such as Linear Predictive codes (LPC), Perceptual 

Linear Prediction (PLP), MFCC, PLP-Relative Spectra etc. [6]. 
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MFCC (state-of-the-art) seems to work best with the intended 

application (ASR). MFCCs were introduced by Davis and 

Mermelstein in the 1980’s.  

 

MFCC Feature extraction is a preparation method that helps 

with filtering the input audio to match what humans can hear. It 

extracts coefficients, for each frame, to be used as inputs to the 

neural network. The Mel scale (1) is used to adjust the input 

frequencies. 

 

       M(f) = 1125 ln (1+ f/700)                                       (1) 

 

Extracting the features/coefficients from an audio file 

involves calculating periodogram, applying the Mel filterbank 

and discrete cosine transform [7]. This usually results in 26 

coefficients, but we dropped the last 13 coefficients because they 

represent fast changes in the filterbank energies and they degrade 

the performance of ASR. So, the result of this process is 13 

coefficients for each frame of the audio.  

 

Mel-Frequency Cepstrum Coefficients technique is clearly 

explained in more details in [7]. 

3. ARPABET PHONETIC TRANSCRIPTION 
Each data point consists of an audio file (goes through 

MFCC process) and a text file which consists of a piece of text 

(matching the speech in the audio). Each word in this sentence is 

converted to its Arpabet phonetic transcriptions (list of 

phonemes describing how the word is pronounced). Then the 

phonemes are converted to numbers which are then called labels. 

So, the input to the network is 13 coefficients for each frame and 

the labels are list of numbers corresponding to phonemes of each 

word in the sentence. 

 

The phonetic dictionary is provided by Carnegie Mellon 

University [8] and it contains over 134,000 words and their 

pronunciations using 39 (not including lexical stress markers) 

different phonemes. These were chosen because of their 

diversity and availability with massive amount of datasets. 

4. ASR NETWORK ARCHITECTURE 
To achieve good speech recognition performance, we have 

decided to implement a Deep Bidirectional Recurrent Neural 

Network (DBRNN) [9]. Recurrent Neural Networks (RNN) are 

used to share variables (Weights and biases) across time for 

varying length inputs/outputs. More practically, they are used 

when there is a need to remember inputs from the past and base 

decisions on them. In theory, RNNs have the ability to capture 

long-term dependencies, but unfortunately, they do not [10]. 

Vanilla RNNs also cause problems while training (Back-

propagation through time) such as vanishing and exploding 

gradients. 

 

Long Short-Term Memory (LSTM) cell is a modified RNN 

cell [11] that allows for the network to easily access long-range 

data from the past. LSTMs use a memory cell that can be 

accessed and modified using gates, which allows the cell state to 

remember only important details from the past and forget other 

information. Fig. 1 shows a single LSTM cell with peephole 

connections [12] (dashed lines). 

 

 
Figure 1: Single LSTM cell with peephole connections 

 

The recurrent connection is what allows the network to share 

variables across time. The number of times the recurrent 

connection is used depends on the number of terms in the 

sequence being trained. In our case, it depends on the number of 

frames in each audio file. Fig. 2 shows an equivalent unfolded 

version of the LSTM cell in Fig. 1. 

 

 
Figure 2: Unfolded LSTM Cell 

 

Vanilla LSTM and RNNs can only access data from the past; 

however, in speech recognition, it is better to have access to past 

and future cell states at every time step. Bidirectional RNNs were 

first introduced in 1997 [13] and were combined with LSTMs in 

2005 [14]. Fig. 3 shows a folded layer of BRNN. 
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Figure 3: Folded Bidirectional LSTM Neural Network 

 

The last modification to this architecture is to add more 

layers of LSTM in both directions. A deep network is better at 

recognizing higher level representations. It is always advised to 

add more layers if the network will be trained on a big enough 

dataset. The deeper the network, the bigger the dataset needed to 

train it because extra layers add more variables instead of sharing 

them. A Deep Bidirectional LSTM is shown in Fig. 4. 

 

 
Figure 4: Deep Bidirectional LSTM 

 

5. CONNECTIONIST TEMPORAL CLASSIFICATION 
A Recurrent Neural Network requires the inputs and targets 

being used for training to be aligned, which makes it very 

difficult to find enough data for training. The input sequences 

(audio frames) are usually longer than the target sequence 

(phonemes/letters), which makes it difficult to align inputs and 

output. Pre-segmented acoustic data is not an option when 

searching for datasets. 

 

One of the solutions to this problem is to use a hybrid DNN-

HMM model. Hidden Markov Models (HMM) can work with 

RNNs to predict the labels [15]; however, many disadvantages 

result from this hybrid system that affect performance and 

usefulness of the model. Discussion of the disadvantages of this 

hybrid system is found in Graves dissertation, section 7.7 [16]. 

 

CTC [3,16] is a layer to be added at the end of a recurrent 

network that allows the network to predict labels at any point in 

the sequence, it does not require the data to be pre-

segmented/aligned.  

 

The key idea is to generate a probability distribution at every 

time step (frame) instead of generating a label. The next logical 

step is to use one of two main decoding methods; Best Path 

Decoding and Prefix Search Decoding [3]. Decoding the 

probability distribution into a maximum likelihood label is the 

outcome of CTC. 

 

CTC has proved to be more accurate than the Hybrid RNN-

HMM and baseline HMM. CTC is used in this work and prefix 

search decoding is implemented for better results. 

6. ERROR MEASUREMENT 
Two of the most important error measures used in speech 

recognition are Label Error Rate (LER) [3] and Word Error Rate 

(WER) [17]. The best-known way to measure the accuracy of 

any ASR or handwriting recognition system is to compare the 

labels predicted by the system to the target. LER is defined as the 

mean normalized edit distance between the network’s prediction 

and the targets.  

 

WER is similar to LER in principle. It is used to determine 

the error of whole words in a sentence instead of the error of 

labels or characters in a word. WER is usually higher than LER 

for ASR applications. Both error measurements methods 

(LER/WER) can range from zero to infinity. 

7. LEVENSHTEIN EDIT DISTANCE 
Levenshtein edit distance [18] is the function that calculates 

the minimum edit distance from one list of phonemes to another. 

In other words, it calculates the number of inserts, deletes and 

substitutions required to output the minimum combined edit 

distance value. Fig. 5 shows an example of calculating the edit 

distance of “IMECE” to “ASME” using dynamic programming.  
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Figure 5: A) Edit operations B) Dynamic programming of Edit distance  

C) Algorithm from Wikipedia 

 

8. LANGUAGE MODEL 
The language model is another recurrent neural network 

model trained on full sentences. The model outputs the 

probability of a word occurring after a given word or sentence. 

It is simpler than the main speech recognition model because it 

is not bidirectional and not as deep. 

 

The model is trained on large text files containing sentences 

with semantic meanings. To reduce computational complexity of 

the training, we use counter functions to keep most repeating x 

number of words and replace the rest with <UNK> token. 

End/beginning of sentences are also replaced with <EOS> token, 

this token will be used in the decoding methods to ensure that the 

sentences are beginning and ending correctly.  

 

The model consists of number of basic LSTM layers 

(depending on the size of training data) stacked on top of each 

other to form a deep network. Input data are P number of words 

from the training batch while the targets are the same P number 

of words shifted by one word to the right. So, each word is 

trained to predict the probabilities of every word in the 

vocabulary (X words) to occur after a given sentence or word. 

 

To decode the probabilities and generate meaningful 

sentences, we have two methods; greedy and beam search 

decoding [19]. Greedy is choosing the next most-probable word 

until the full sentence is generated. The problem with this 

method is that it will choose only one path based on the results 

at one early step of decoding. It is possible that after several steps 

the probability of this chosen path will decrease and a different 

path’s probability increases. Fig. 6 shows an example of the 

greedy search method. Other paths like “The bottle is falling” 

may have had better overall probability but it was not chosen 

because this method only looks one step ahead and chooses a 

single path. 

 

 
Figure 6: Greedy decoding 

 

To solve this problem, the beam search method is used. 

Depending on the beam width K, the method chooses the highest 

K paths at each step and continues in each path individually. The 

result is several sentences (depending on the K value and number 

of steps). The sentences can be compared using the <EOS> 

token, by checking the probability of the <EOS> token to occur 

after each sentence. The sentence with the highest probability is 

the outcome of this method. Fig. 7 shows an example of beam 

search decoding. The total number of sentences is equal to K 

raised to the power N, where N is the number of words in the 

sentence (N = 4 in fig. 7). 

 

 
Figure 7: Beam Search Decoding 

  

9. EXPERIMENTAL SETUP 
The Bidirectional Recurrent LSTM consists of 2 LSTMs 

(one in each direction) with 100 hidden blocks in each direction. 

Then the network is made deep by adding 2 more layers of the 

same architecture to make 3 total number of layers. Two fully 

connected layers were attached to the output of the recurrent 

network with 128 hidden units in each. 

 

The input to the network is (13 coefficients) x (number of 

frames). The input side is made dynamic; it can accept varying 

length of data in the same batch. The network outputs to number 

of phonemes (79) + blank label. Prefix/Beam search decoding 

was used for evaluation. 
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The optimizer used for backpropagation through time 

(BPTT) is “Adagrad” and its initial learning rate is 0.01 with a 

momentum of 0.95. Dropout was not used. This network was not 

trained on the well-known TIMIT speech corpus dataset, instead, 

we trained it on LibriSpeech ASR corpus [20]. This dataset 

consists of 100 hours of speech sampled at 16 KHz derived from 

read audiobooks.  

 

Each audio file was used as 1 batch, so the number of frames 

in each file is equal to the number of times the variables will be 

shared in the recurrent network. This architecture resulted in a 

38.5% LER on the Test set. 

 

The predicted set of phonemes (sentence) was then 

segmented into smaller sets of phonemes (words) using the 

predicted blank labels. Each word was compared to CMU 

phonetic dictionary phonemes to find the closest words at 1, 2 

and 3 Levenshtein edit distances. Each edit distance option 

generates a list of words which is used by a language model to 

determine the final sentence (with the most semantic meaning). 

5 sentences are generated (using a beam width of 2), and the 

sentence with the smallest edit distance is chosen.  

 

The language model consists of a LSTM cell training in the 

forward direction only. The network is made deep by adding 

another LSTM cell to form a total of a 2-layer LSTM network. 

Each LSTM has 1500 hidden units and 0 forget bias. An initial 

learning rate of 1.0 was used. 

 

 This language model was trained on a small version (4,983 

KB) of the Penn Tree Bank (PTB) dataset containing 10,000 

distinct words. The model was trained for 55 epochs. For 

decoding, a beam search method was used with the options of 1 

(greedy) and beam width of 2.  

 

We prepared another language model for testing, with a 

training dataset 30 times larger than the PTB dataset used above. 

We downloaded and pre-processed 500 random e-books [22] to 

form a 150,000 KB training dataset. This model contains 30,000 

distinct words and was trained for 2 epochs. 

 

The LER and WER is calculated for all the options 

mentioned above (edit distances and beam widths). A total of 100 

random test data points (limit of 6 words in each sentences) were 

used from the testing dataset and the averages of results were 

calculated for each option. Results from using both language 

models for LER and WER are shown in section 10. 

 

Additionally, we have tested the full system with 8 different 

human subjects, generating 2 data points from each test. The 

subjects were asked to record a sentence and use a scale from 1 

to 10 to answer survey questions, such as how close the output 

phonemes are to the actual phonemes they said and how good 

the system identified spaces between the words. We were able to 

calculate how many words in the spoken sentence were found in 

the potential words’ lists at each edit distance. Results are shown 

in section 10. 

10. RESULTS AND DISCUSSION 
Table 1 shows the LER and WER, including standard 

deviations for ASR + PTB dataset. Table 2 shows the LER and 

WER, including standard deviations for ASR + downloaded 

eBooks model. As shown in results, the increase in beam width 

has resulted in a decrease in the error (as expected). The increase 

in edit distance resulted in an increase in the error because the 

test audio files do not include audio with speech impediment. 

 
Table 1: LER + ST. DEV and WER + ST. DEV. for ASR + Small PTB 

language model 

 
 

 
Table 2: LER + ST. DEV and WER + ST. DEV. for ASR + downloaded 

eBooks language model 

 
 

The model generates more words when the edit distance is 

increased. If the audio does not include any speech impediment, 

searching at an edit distance of two will result in more error than 

at one. Our target is to use the smallest edit distance that 

guarantees the delivery of the correct words to the language 

model. 

 

         Figure 8 shows how many words per sentence were 

found by the test subjects in the potential words at each edit 

distance. Test subjects having no accents were able to find 

significantly more words, at an edit distance of one, than subjects 

with accents. As we increase the edit distance, the 

words/sentence found increase for all the data points. This 

concludes that it is recommended to increase the edit distance for 

data with speech impediment to acquire better results (given a 

good language model). The number shown after each accent in 

the legend represents the data points count. Figure 9 shows the 

survey results on the phoneme accuracy, space detection and the 

application’s ease-of-use. 

LER    WER 1 2 3

1 55.3 ± 13.6%               100.3 ± 25.9% 70.4 ± 12.6%               108.7 ± 22.6% 76.2 ± 10.1%             110.0 ± 20.5%

2 52.0 ± 13.5%              97.6 ± 28.8% 64.4 ± 11.4%             105.4 ± 24.3% 72.0 ± 8.9%              108.2 ± 21.4%

Edit Distance

B
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m
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id
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LER    WER 1 2 3

1 59.5 ± 18.0%             96.9 ± 28.0% 67.3 ± 14.1%              101.2 ±27.5% 75.4 ± 13.8%               103.6 ± 26.1%

2 53.6 ±17.1%            88.5 ± 31.1% 63.1 ± 13.0%             99.4 ± 27.6% 71.1 ± 12.4%          102.9 ± 25.9% 

Edit Distance
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Figure 8: Words found per sentence at each edit distance for all test 

subjects 

 

 

 
Figure 9: Test subjects' opinion on various aspects of the ASR system 

 

The edit distance and beam search width are options that can 

be modified to achieve different performances to assist persons 

with speech impediments. Increasing the edit distance and beam 

width can be translated into relying more on the language model 

than on speech recognition. 

 

The idea of relying more on the language model and less on 

speech recognition seems to be comparable to how the human 

mind tries to understand distorted audio. We know that the 

speech must have semantic meaning so we generate words close 

to what we hear by changing the phonemes and connecting them 

in a way that makes sense grammatically and logically. The 

amount of words we generate from each distorted word depends 

on the severity of distortion that we expect from the audio.  

 

In other words, if the audio file contains major speech 

impediment, the model will not find the correct words within an 

edit distance of 1; however, the model has a higher probability 

of finding those words at an edit distance of 2 or 3. It is always 

better to use a larger beam width, especially when a large edit 

distance is used. 

 

In practice, the user can adjust the edit distance to match the 

severity of speech impediment, then adjust the beam search to a 

value that provides the best results at a reasonable computational 

complexity (time consuming process).  

11. FUTURE WORKS 
These results presented in this paper can be improved by 

using better datasets. The TIMIT dataset should be used here for 

better performance because the data points are shorter (less 

frames per run), which helps the model learn better. 

 

The language model should be trained on the full PTB 

dataset for a significantly better performance. Also, the eBooks 

dataset should be trained for more than 2 epochs and the 

architecture can be modified into a deeper (more layers) and 

wider (more hidden units) network. We are planning to include 

testing data with speech impediment in the experiment for future 

work. 

12. CONCLUSION 
In this paper, we have implemented a complete speech 

recognition model using recurrent neural networks and 

connected it to a language model. We also presented options that 

can be modified to assist persons with different levels of speech 

impediments. The presented results matched our expectations for 

the effect of the edit distance and beam width on the LER/WER, 

and we are working on including test data with speech 

impediment to further improve the models and prove the validity 

of the discussed concepts. 
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