

 1 Copyright © 2017 by ASME

Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition
IMECE2017

November 3-9, 2017, Tampa, Florida, USA

IMECE2017-71027

SPEECH ASSISTANCE FOR PERSONS WITH SPEECH IMPEDIMENTS USING
ARTIFICIAL NEURAL NETWORKS

Ramy Mounir
University of South Florida
Department of Mechanical

Engineering
Tampa, FL, USA

Redwan Alqasemi
University of South Florida
Department of Mechanical

Engineering
Tampa, FL, USA

Rajiv Dubey
University of South Florida
Department of Mechanical

Engineering
Tampa, FL, USA

ABSTRACT
This work focuses on the research related to enabling

individuals with speech impairment to use speech-to-text

software to recognize and dictate their speech. Automatic Speech

Recognition (ASR) tends to be a challenging problem for

researchers because of the wide range of speech variability.

Some of the variabilities include different accents,

pronunciations, speeds, volumes, etc. It is very difficult to train

an end-to-end speech recognition model on data with speech

impediment due to the lack of large enough datasets, and the

difficulty of generalizing a speech disorder pattern on all users

with speech impediments. This work highlights the different

techniques used in deep learning to achieve ASR and how it can

be modified to recognize and dictate speech from individuals

with speech impediments.

1. INTRODUCTION
 Recent advancements in Artificial Neural Networks (ANN)

have allowed researchers to expect the state-of-the-art

performance on every application assigned to the network. For

example, prediction of depth dimension from a single camera [1]

and the classification of raw pixels into objects [2].

 Likewise, the advancements in Recurrent Neural Networks

-especially ASR– have provided the state-of-the-art

performance. The work of Graves et al. [3] in classical Temporal

Classification (CTC) made it possible to use unsegmented data

in an end-to-end speech recognition application [4].

Other statistical Models, such as Hidden Markov Models

(HMM), Gaussian Mixture Models (GMM) /HMM, Dynamic

Time Wrapping (DTW) and Deep Neural Networks

(DNN)/HMM, offer a solution to the speech recognition problem

[5,15]. In this work, we are implementing a Deep Bidirectional

Recurrent Neural Network with a CTC output layer for end-to-

end training. The chosen method provides the state-of-the-art

performance in speech recognition [4] and is easier to implement

with the TensorFlow framework used for designing and training

this ASR model. We have not considered any of the other

methods for the work presented in this paper.

 Deep Neural Networks (DNN) require a large dataset for

supervised training to avoid underfitting. It is challenging to find

a large enough dataset containing speech impediment data to

train an end-to-end speech recognition model, so we have to rely

on post-processing to solve this problem.

It is important to understand the difference between a

normal speech recognition system and one that is designed for

persons with speech impediments. In a normal ASR system, the

input sentence provided to the network is expected to have

semantic meaning, and has no missing or extra phonemes/letters.

This makes it easier to train a classification network and

transform input speech to phonemes/letters. However, a system

designed to transcribe speech impediment audio input will have

to generate a number of potential words depending on the

severity of the impediment, and rely on a language model to

generate full sentences with semantic meanings.

This work focuses on building a full phoneme-based ASR

system, modifying the output phonemes and connecting the

generated potential words to a language model.

2. FEATURE EXTRACTION
The first step in any automatic speech recognition system is

feature extraction. Many techniques are being used for feature

extraction such as Linear Predictive codes (LPC), Perceptual

Linear Prediction (PLP), MFCC, PLP-Relative Spectra etc. [6].

 2 Copyright © 2017 by ASME

MFCC (state-of-the-art) seems to work best with the intended

application (ASR). MFCCs were introduced by Davis and

Mermelstein in the 1980’s.

MFCC Feature extraction is a preparation method that helps

with filtering the input audio to match what humans can hear. It

extracts coefficients, for each frame, to be used as inputs to the

neural network. The Mel scale (1) is used to adjust the input

frequencies.

 M(f) = 1125 ln (1+ f/700) (1)

Extracting the features/coefficients from an audio file

involves calculating periodogram, applying the Mel filterbank

and discrete cosine transform [7]. This usually results in 26

coefficients, but we dropped the last 13 coefficients because they

represent fast changes in the filterbank energies and they degrade

the performance of ASR. So, the result of this process is 13

coefficients for each frame of the audio.

Mel-Frequency Cepstrum Coefficients technique is clearly

explained in more details in [7].

3. ARPABET PHONETIC TRANSCRIPTION
Each data point consists of an audio file (goes through

MFCC process) and a text file which consists of a piece of text

(matching the speech in the audio). Each word in this sentence is

converted to its Arpabet phonetic transcriptions (list of

phonemes describing how the word is pronounced). Then the

phonemes are converted to numbers which are then called labels.

So, the input to the network is 13 coefficients for each frame and

the labels are list of numbers corresponding to phonemes of each

word in the sentence.

The phonetic dictionary is provided by Carnegie Mellon

University [8] and it contains over 134,000 words and their

pronunciations using 39 (not including lexical stress markers)

different phonemes. These were chosen because of their

diversity and availability with massive amount of datasets.

4. ASR NETWORK ARCHITECTURE
To achieve good speech recognition performance, we have

decided to implement a Deep Bidirectional Recurrent Neural

Network (DBRNN) [9]. Recurrent Neural Networks (RNN) are

used to share variables (Weights and biases) across time for

varying length inputs/outputs. More practically, they are used

when there is a need to remember inputs from the past and base

decisions on them. In theory, RNNs have the ability to capture

long-term dependencies, but unfortunately, they do not [10].

Vanilla RNNs also cause problems while training (Back-

propagation through time) such as vanishing and exploding

gradients.

Long Short-Term Memory (LSTM) cell is a modified RNN

cell [11] that allows for the network to easily access long-range

data from the past. LSTMs use a memory cell that can be

accessed and modified using gates, which allows the cell state to

remember only important details from the past and forget other

information. Fig. 1 shows a single LSTM cell with peephole

connections [12] (dashed lines).

Figure 1: Single LSTM cell with peephole connections

The recurrent connection is what allows the network to share

variables across time. The number of times the recurrent

connection is used depends on the number of terms in the

sequence being trained. In our case, it depends on the number of

frames in each audio file. Fig. 2 shows an equivalent unfolded

version of the LSTM cell in Fig. 1.

Figure 2: Unfolded LSTM Cell

Vanilla LSTM and RNNs can only access data from the past;

however, in speech recognition, it is better to have access to past

and future cell states at every time step. Bidirectional RNNs were

first introduced in 1997 [13] and were combined with LSTMs in

2005 [14]. Fig. 3 shows a folded layer of BRNN.

 3 Copyright © 2017 by ASME

Figure 3: Folded Bidirectional LSTM Neural Network

The last modification to this architecture is to add more

layers of LSTM in both directions. A deep network is better at

recognizing higher level representations. It is always advised to

add more layers if the network will be trained on a big enough

dataset. The deeper the network, the bigger the dataset needed to

train it because extra layers add more variables instead of sharing

them. A Deep Bidirectional LSTM is shown in Fig. 4.

Figure 4: Deep Bidirectional LSTM

5. CONNECTIONIST TEMPORAL CLASSIFICATION
A Recurrent Neural Network requires the inputs and targets

being used for training to be aligned, which makes it very

difficult to find enough data for training. The input sequences

(audio frames) are usually longer than the target sequence

(phonemes/letters), which makes it difficult to align inputs and

output. Pre-segmented acoustic data is not an option when

searching for datasets.

One of the solutions to this problem is to use a hybrid DNN-

HMM model. Hidden Markov Models (HMM) can work with

RNNs to predict the labels [15]; however, many disadvantages

result from this hybrid system that affect performance and

usefulness of the model. Discussion of the disadvantages of this

hybrid system is found in Graves dissertation, section 7.7 [16].

CTC [3,16] is a layer to be added at the end of a recurrent

network that allows the network to predict labels at any point in

the sequence, it does not require the data to be pre-

segmented/aligned.

The key idea is to generate a probability distribution at every

time step (frame) instead of generating a label. The next logical

step is to use one of two main decoding methods; Best Path

Decoding and Prefix Search Decoding [3]. Decoding the

probability distribution into a maximum likelihood label is the

outcome of CTC.

CTC has proved to be more accurate than the Hybrid RNN-

HMM and baseline HMM. CTC is used in this work and prefix

search decoding is implemented for better results.

6. ERROR MEASUREMENT
Two of the most important error measures used in speech

recognition are Label Error Rate (LER) [3] and Word Error Rate

(WER) [17]. The best-known way to measure the accuracy of

any ASR or handwriting recognition system is to compare the

labels predicted by the system to the target. LER is defined as the

mean normalized edit distance between the network’s prediction

and the targets.

WER is similar to LER in principle. It is used to determine

the error of whole words in a sentence instead of the error of

labels or characters in a word. WER is usually higher than LER

for ASR applications. Both error measurements methods

(LER/WER) can range from zero to infinity.

7. LEVENSHTEIN EDIT DISTANCE
Levenshtein edit distance [18] is the function that calculates

the minimum edit distance from one list of phonemes to another.

In other words, it calculates the number of inserts, deletes and

substitutions required to output the minimum combined edit

distance value. Fig. 5 shows an example of calculating the edit

distance of “IMECE” to “ASME” using dynamic programming.

 4 Copyright © 2017 by ASME

Figure 5: A) Edit operations B) Dynamic programming of Edit distance

C) Algorithm from Wikipedia

8. LANGUAGE MODEL
The language model is another recurrent neural network

model trained on full sentences. The model outputs the

probability of a word occurring after a given word or sentence.

It is simpler than the main speech recognition model because it

is not bidirectional and not as deep.

The model is trained on large text files containing sentences

with semantic meanings. To reduce computational complexity of

the training, we use counter functions to keep most repeating x

number of words and replace the rest with <UNK> token.

End/beginning of sentences are also replaced with <EOS> token,

this token will be used in the decoding methods to ensure that the

sentences are beginning and ending correctly.

The model consists of number of basic LSTM layers

(depending on the size of training data) stacked on top of each

other to form a deep network. Input data are P number of words

from the training batch while the targets are the same P number

of words shifted by one word to the right. So, each word is

trained to predict the probabilities of every word in the

vocabulary (X words) to occur after a given sentence or word.

To decode the probabilities and generate meaningful

sentences, we have two methods; greedy and beam search

decoding [19]. Greedy is choosing the next most-probable word

until the full sentence is generated. The problem with this

method is that it will choose only one path based on the results

at one early step of decoding. It is possible that after several steps

the probability of this chosen path will decrease and a different

path’s probability increases. Fig. 6 shows an example of the

greedy search method. Other paths like “The bottle is falling”

may have had better overall probability but it was not chosen

because this method only looks one step ahead and chooses a

single path.

Figure 6: Greedy decoding

To solve this problem, the beam search method is used.

Depending on the beam width K, the method chooses the highest

K paths at each step and continues in each path individually. The

result is several sentences (depending on the K value and number

of steps). The sentences can be compared using the <EOS>

token, by checking the probability of the <EOS> token to occur

after each sentence. The sentence with the highest probability is

the outcome of this method. Fig. 7 shows an example of beam

search decoding. The total number of sentences is equal to K

raised to the power N, where N is the number of words in the

sentence (N = 4 in fig. 7).

Figure 7: Beam Search Decoding

9. EXPERIMENTAL SETUP
The Bidirectional Recurrent LSTM consists of 2 LSTMs

(one in each direction) with 100 hidden blocks in each direction.

Then the network is made deep by adding 2 more layers of the

same architecture to make 3 total number of layers. Two fully

connected layers were attached to the output of the recurrent

network with 128 hidden units in each.

The input to the network is (13 coefficients) x (number of

frames). The input side is made dynamic; it can accept varying

length of data in the same batch. The network outputs to number

of phonemes (79) + blank label. Prefix/Beam search decoding

was used for evaluation.

 5 Copyright © 2017 by ASME

The optimizer used for backpropagation through time

(BPTT) is “Adagrad” and its initial learning rate is 0.01 with a

momentum of 0.95. Dropout was not used. This network was not

trained on the well-known TIMIT speech corpus dataset, instead,

we trained it on LibriSpeech ASR corpus [20]. This dataset

consists of 100 hours of speech sampled at 16 KHz derived from

read audiobooks.

Each audio file was used as 1 batch, so the number of frames

in each file is equal to the number of times the variables will be

shared in the recurrent network. This architecture resulted in a

38.5% LER on the Test set.

The predicted set of phonemes (sentence) was then

segmented into smaller sets of phonemes (words) using the

predicted blank labels. Each word was compared to CMU

phonetic dictionary phonemes to find the closest words at 1, 2

and 3 Levenshtein edit distances. Each edit distance option

generates a list of words which is used by a language model to

determine the final sentence (with the most semantic meaning).

5 sentences are generated (using a beam width of 2), and the

sentence with the smallest edit distance is chosen.

The language model consists of a LSTM cell training in the

forward direction only. The network is made deep by adding

another LSTM cell to form a total of a 2-layer LSTM network.

Each LSTM has 1500 hidden units and 0 forget bias. An initial

learning rate of 1.0 was used.

 This language model was trained on a small version (4,983

KB) of the Penn Tree Bank (PTB) dataset containing 10,000

distinct words. The model was trained for 55 epochs. For

decoding, a beam search method was used with the options of 1

(greedy) and beam width of 2.

We prepared another language model for testing, with a

training dataset 30 times larger than the PTB dataset used above.

We downloaded and pre-processed 500 random e-books [22] to

form a 150,000 KB training dataset. This model contains 30,000

distinct words and was trained for 2 epochs.

The LER and WER is calculated for all the options

mentioned above (edit distances and beam widths). A total of 100

random test data points (limit of 6 words in each sentences) were

used from the testing dataset and the averages of results were

calculated for each option. Results from using both language

models for LER and WER are shown in section 10.

Additionally, we have tested the full system with 8 different

human subjects, generating 2 data points from each test. The

subjects were asked to record a sentence and use a scale from 1

to 10 to answer survey questions, such as how close the output

phonemes are to the actual phonemes they said and how good

the system identified spaces between the words. We were able to

calculate how many words in the spoken sentence were found in

the potential words’ lists at each edit distance. Results are shown

in section 10.

10. RESULTS AND DISCUSSION
Table 1 shows the LER and WER, including standard

deviations for ASR + PTB dataset. Table 2 shows the LER and

WER, including standard deviations for ASR + downloaded

eBooks model. As shown in results, the increase in beam width

has resulted in a decrease in the error (as expected). The increase

in edit distance resulted in an increase in the error because the

test audio files do not include audio with speech impediment.

Table 1: LER + ST. DEV and WER + ST. DEV. for ASR + Small PTB

language model

Table 2: LER + ST. DEV and WER + ST. DEV. for ASR + downloaded

eBooks language model

The model generates more words when the edit distance is

increased. If the audio does not include any speech impediment,

searching at an edit distance of two will result in more error than

at one. Our target is to use the smallest edit distance that

guarantees the delivery of the correct words to the language

model.

 Figure 8 shows how many words per sentence were

found by the test subjects in the potential words at each edit

distance. Test subjects having no accents were able to find

significantly more words, at an edit distance of one, than subjects

with accents. As we increase the edit distance, the

words/sentence found increase for all the data points. This

concludes that it is recommended to increase the edit distance for

data with speech impediment to acquire better results (given a

good language model). The number shown after each accent in

the legend represents the data points count. Figure 9 shows the

survey results on the phoneme accuracy, space detection and the

application’s ease-of-use.

LER WER 1 2 3

1 55.3 ± 13.6% 100.3 ± 25.9% 70.4 ± 12.6% 108.7 ± 22.6% 76.2 ± 10.1% 110.0 ± 20.5%

2 52.0 ± 13.5% 97.6 ± 28.8% 64.4 ± 11.4% 105.4 ± 24.3% 72.0 ± 8.9% 108.2 ± 21.4%

Edit Distance

B
ea

m
 W

id
th

LER WER 1 2 3

1 59.5 ± 18.0% 96.9 ± 28.0% 67.3 ± 14.1% 101.2 ±27.5% 75.4 ± 13.8% 103.6 ± 26.1%

2 53.6 ±17.1% 88.5 ± 31.1% 63.1 ± 13.0% 99.4 ± 27.6% 71.1 ± 12.4% 102.9 ± 25.9%

Edit Distance

B
ea

m
 W

id
th

 6 Copyright © 2017 by ASME

Figure 8: Words found per sentence at each edit distance for all test

subjects

Figure 9: Test subjects' opinion on various aspects of the ASR system

The edit distance and beam search width are options that can

be modified to achieve different performances to assist persons

with speech impediments. Increasing the edit distance and beam

width can be translated into relying more on the language model

than on speech recognition.

The idea of relying more on the language model and less on

speech recognition seems to be comparable to how the human

mind tries to understand distorted audio. We know that the

speech must have semantic meaning so we generate words close

to what we hear by changing the phonemes and connecting them

in a way that makes sense grammatically and logically. The

amount of words we generate from each distorted word depends

on the severity of distortion that we expect from the audio.

In other words, if the audio file contains major speech

impediment, the model will not find the correct words within an

edit distance of 1; however, the model has a higher probability

of finding those words at an edit distance of 2 or 3. It is always

better to use a larger beam width, especially when a large edit

distance is used.

In practice, the user can adjust the edit distance to match the

severity of speech impediment, then adjust the beam search to a

value that provides the best results at a reasonable computational

complexity (time consuming process).

11. FUTURE WORKS
These results presented in this paper can be improved by

using better datasets. The TIMIT dataset should be used here for

better performance because the data points are shorter (less

frames per run), which helps the model learn better.

The language model should be trained on the full PTB

dataset for a significantly better performance. Also, the eBooks

dataset should be trained for more than 2 epochs and the

architecture can be modified into a deeper (more layers) and

wider (more hidden units) network. We are planning to include

testing data with speech impediment in the experiment for future

work.

12. CONCLUSION
In this paper, we have implemented a complete speech

recognition model using recurrent neural networks and

connected it to a language model. We also presented options that

can be modified to assist persons with different levels of speech

impediments. The presented results matched our expectations for

the effect of the edit distance and beam width on the LER/WER,

and we are working on including test data with speech

impediment to further improve the models and prove the validity

of the discussed concepts.

ACKNOWLEDGMENTS
The authors would like to thank the Florida Department of

Education - Division of Vocational Rehabilitation for their

support.

REFERENCES
[1] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map

Prediction from a Single Image using a Multi-Scale Deep

Network,” http://papers.nips.cc. [Online]. Available:

http://papers.nips.cc/paper/5539-depth-map-prediction-from-a-

single-image-using-a-multi-scale-deep-network.pdf.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep Convolutional Neural

Networks,” Advances in Neural Information Processing

Systems, 2012.

[3] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,

“Connectionist temporal classification,” Proceedings of the 23rd

international conference on Machine learning - ICML '06, 2006.

[4] A. Graves and N. Jaitly, "Towards End-to-End Speech

Recognition with Recurrent Neural Networks,". [Online].

Available: http://jmlr.org/proceedings/papers/v32/graves14.pdf.

http://jmlr.org/proceedings/papers/v32/graves14.pdf

 7 Copyright © 2017 by ASME

[5] “Speech recognition,” Wikipedia, Available:

https://en.wikipedia.org/wiki/Speech_recognition#Models.2C_

methods.2C_and_algorithms.

[6] N. Dave, “Feature Extraction Methods LPC, PLP and

MFCC In Speech Recognition,” INTERNATIONAL JOURNAL

FOR ADVANCE RESEARCH IN ENGINEERING AND

TECHNOLOGY, vol. 1, no. VI, Jul. 2013.

[7] P. Cryptography, "Mel Frequency Cepstral Coefficient

(MFCC) tutorial," in practicalcryptography.com. [Online].

Available:

http://practicalcryptography.com/miscellaneous/machine-

learning/guide-mel-frequency-cepstral-coefficients-mfccs/.

[8] C. M. U., “The CMU Pronouncing Dictionary,” The

CMU Pronouncing Dictionary. [Online]. Available:

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[9] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech

recognition with deep recurrent neural networks,” 2013 IEEE

International Conference on Acoustics, Speech and Signal

Processing, 2013.

[10] Y. Bengio, P. Semard, and P. Frasconi, “Learning Long-

Term Dependencies with Gradient Descent is Difficult,” IEEE

Transactions on Neural Networks, vol. 2, no. 2, Mar. 1994.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Computation, 1997.

[12] F. Gers and J. Schmidhuber, “Recurrent nets that time

and count,” Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks. IJCNN 2000. Neural

Computing: New Challenges and Perspectives for the New

Millennium, 2000.

[13] M. Schuster and K. K. Paliwal, “Bidirectional

Recurrent Neural Networks,” IEEE Transactions on Signal

Processing, 1997.

[14] A. Graves and J. Schmidhuber, “Framewise phoneme

classification with bidirectional LSTM and other neural network

architectures,” Neural Networks, vol. 18, no. 5-6, pp. 602–610,

2005.

[15] D. Yu and L. Deng, Automatic speech recognition: A

deep learning approach. United Kingdom: Springer London,

2014.
[16] A. Graves, “Supervised Sequence Labelling,” Studies

in Computational Intelligence Supervised Sequence Labelling

with Recurrent Neural Networks, 2012.

[17] M. Thoma, “Word Error Rate Calculation,” Martin

Thoma, 15-Nov-2013. [Online]. Available: https://martin-

thoma.com/word-error-rate-calculation/.

[18] M. Gilleland and M. P. Software, “Levenshtein

Distance, in Three Flavors.” [Online]. Available:

http://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Fall2006/Assignme

nts/editdistance/Levenshtein%20Distance.htm.

[19] D. Heres, “Sampling Strategies for Recurrent Neural

Networks,” 30-Aug-2016. [Online]. Available:

http://danielheres.space/posts/2016/08/30/sampling-strategies-

for-recurrent-neural-networks.html.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,

“Librispeech: An ASR corpus based on public domain audio

books,” 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2015.

[21] A. Taylor, M. Marcus, and B. Santorini, “The Penn

Treebank: An Overview,” Treebanks Text, Speech and Language

Technology, 2003.

[22] “Free ebooks by Project Gutenberg,” Project

Gutenberg. [Online]. Available:

https://www.gutenberg.org/wiki/Main_Page.

