Args#
Kagu parser
usage: kagu.arguments.base_arguments [-h] [--dataset DATASET] [--output OUTPUT] [--name NAME] [--p_name P_NAME]
[--p_device {gpu,slurm,cpu,mps}] [--p_partition P_PARTITION] [--p_n_nodes P_N_NODES]
[--p_n_gpus P_N_GPUS] [--p_n_cpus P_N_CPUS] [--p_ram P_RAM] [--p_backend {nccl,gloo}]
[--p_verbose P_VERBOSE] [--p_logs P_LOGS] [--frame_size FRAME_SIZE [FRAME_SIZE ...]] [--snippet SNIPPET]
[--step STEP] [--backbone {inception,resnet}] [--backbone_pretrained BACKBONE_PRETRAINED]
[--backbone_frozen BACKBONE_FROZEN] [--predictor {lstm,gru}] [--dropout DROPOUT] [--teacher TEACHER]
[--optimizer OPTIMIZER] [--lr LR] [--dbg] [--tb]
Named Arguments#
- --dataset
Path to dataset directory
Default: “data/kagu”
- --output
Path to output directory. Will be created if does not exist
Default: “out”
- --name
Name of the experiment for logging purposes
Default: “my_model”
- --p_name
Platform job name for SLURM
Default: “job”
- --p_device
Possible choices: gpu, slurm, cpu, mps
Platform device
Default: “gpu”
- --p_partition
Platform partition for SLURM
Default: “general”
- --p_n_nodes
Platform number of nodes for SLURM
Default: 1
- --p_n_gpus
Platform number of GPUs per node
Default: 1
- --p_n_cpus
Platform number of total CPUs per process/GPU
Default: 2
- --p_ram
Platform total RAM in GB
Default: 10
- --p_backend
Possible choices: nccl, gloo
Platform backend for IPC
Default: “nccl”
- --p_verbose
Platform verbose
Default: True
- --p_logs
Platform console logs path. Will be added to output folder automatically
Default: “./logs”
- --frame_size
Frame size of images
Default: [299, 299]
- --snippet
Number of frames to process
Default: 16
- --step
The stride by which we process the frames. Same as snippet if not overlapping
Default: 8
- --backbone
Possible choices: inception, resnet
Backbone encoder architecture
Default: “inception”
- --backbone_pretrained
whether the backbone is pretrained or not
Default: True
- --backbone_frozen
whether the backbone’s weights are frozen or not
Default: True
- --predictor
Possible choices: lstm, gru
predictor unit
Default: “lstm”
- --dropout
dropout rate, applied to hidden state(s)
Default: 0.4
- --teacher
whether to apply teacher forcing
Default: True
- --optimizer
Optimizer function to choose
Default: “adam”
- --lr
Initial Learning Rate
Default: 1e-08
- --dbg
Flag for debugging and development. Overrides log files.
Default: False
- --tb
Flag for tb logging. If False, does not save tensorboard files.
Default: False