Dataset#
from kagu.datasets.kagu_dataset import KaguDatasetArguments, KaguDataset
kagu_args = KaguDatasetArguments(dataset='data/kagu',
                                  frame_size=[299,299],
                                  world_size=4,
                                  global_rank=0,
                                  snippet=16,
                                  step=8)
kagu_dataset = kagu_dataset(kagu_args)
- class kagu.datasets.kagu_dataset.KaguDatasetArguments(dataset: str, frame_size: list, world_size: int, global_rank: int, snippet: int, step: int)[source]#
- Arguments for Kagu dataset - dataset: str#
- The path to the datset 
 - frame_size: list#
- The frame size of the images 
 - world_size: int#
- The number of proceses spawned 
 - global_rank: int#
- The rank of the current process 
 - snippet: int#
- Number of frames to process 
 - step: int#
- The stride by which we process the frames. Same as snippet if not overlapping 
 
- class kagu.datasets.kagu_dataset.KaguDataset(args: KaguDatasetArguments)[source]#
- The kagu dataset class that streams video files and outputs a list of frames according to snippet and step. - Parameters:
- args (KaguDatasetArguments) – The parameters used for the Kagu dataset 
 - __getitem__(index)[source]#
- Iterates over the dataset in a streaming fashion and retrieves - KaguDatasetArguments.snippetframes at a time.- Parameters:
- index (int) – The index of the item in the dataset to retrieve. Not used. 
- Returns:
- (torch.tensor): the frames in tensor format